
 pg. 1 Brandon Steinke Python Database App brandon.steinke@yahoo.com

PROJECT : PYTHON APP & RELATIONAL DATABASE

DEVELOPER : BRANDON STEINKE

Email: brandon.steinke@yahoo.com | Phone: (415) 271-3377

LinkedIn: https://www.linkedin.com/in/brandon-steinke-2817ba | Tech Portfolio: https://brandino771.github.io

Overview and screen shots below:

As an independent contractor for a small company, I developed a custom database and user-friendly
(standalone) Python desktop application. The app performed the ingestion, and formatting of raw data,
database bulk uploads of clean data, and the output of formatted reports from the database. The project
started with conceptualizing the database schema with the CEO, which was tricky because the product
inventory flow wasn’t finalized. The database was developed with automated features, such as triggers
that move, copy, delete, and or summarize data and indicate if errors are present in the inventory linear
flow. Advanced queries were used to join and subtotal data from saved database views and tables. The
app can ingest CSV or online XML data. For CSV sources the user places raw CSV files in a designated
folder, which is processed, renamed, and moved to a processed folder when complete. For XML the user
completes a form on the web page. Prior to database upload, the raw data is extracted, formatted,
filtered for duplicates. Any errors found in the raw data are output to a designated folder as a CSV error
log (with data prepended to the top of existing file). After upload, a database log generates as a text file
(prepending data to the top of existing log file, which pops up in MS Notepad on the user’s screen) that
indicates the number of records uploaded, upload time, data rejected. This database log also generates
within the web page as another source of user feedback. This log was especially useful during
development where I noticed the upload job was hanging for minutes instead of seconds (of course it all
came down to one line of incorrect code in a database trigger).

A local web page is the UI where the user controls the data going in and out with easy-to-use buttons
and forms. Data from the database can output directly into the page in formatted HTML tables and then
be downloaded as PDF or CSV. The user can request data by either custom SQL queries input directly into
a text field or select reports from drop down menus. Further the user can run batch CSV reports by
opening a preformatted CSV file, selecting the desired reports to run, then save, and click the “Run Batch
Reports” on the web page to quickly output individual reports to designated folder. Further I integrated a
JavaScript pdf library so that HTML table data could be output as PDFs directly from the web page. I had
trouble implementing the library features and ended up coding my own custom solution to utilize the
library to calculate characters per line, per page, page layout, page size and headers, and page numbers.
Further I provided 10 pages of ‘how to’ documentation for reference.

Retrospective:

Going into this project I had some experience with Python, Flask, and SQL Alchemy to serve as the REST
API and database conduit, with JavaScript as the requester and presenter of the data. However, I had no
experience creating a Python executable application, so there was a learning curve with organizing the
project and assigning various folder paths (but was surprisingly pain free). For the database, I had to
brush up on my skills by taking a SQL essentials course with SQLite, which is the format we went with.
The company did not want cloud capability and security was not an issue, and from my research found
SQLite could handle a lot of data rapidly (further the company could use DB Browser in addition to the
app to access data and my database setup code). Per how the CEO wanted the data to migrate from
table to table I researched and tested database triggers, bulk upload techniques and speeds, prior to
committing to the db design and taking the job. Further I integrated a prior side project for the UI and
evolved that further. I enjoyed developing the automation parts, as well as the summary table in the
database for “at a glance” view of all important details for each inventory item. All the technology used
was open source. To complete the project, I pulled from my prior tech project experience, and game
development methodology to test, iterate, and connect all the features into a workable application.

mailto:brandon.steinke@yahoo.com
https://www.linkedin.com/in/brandon-steinke-2817ba
https://brandino771.github.io/

 pg. 2 Brandon Steinke Python Database App brandon.steinke@yahoo.com

SCREEN SHOT 1 :

This is the view of the web page on initial load. It is clean and slim. Most features and forms are hidden

until the user clicks on a button. The page will expand as forms appear or data is populated in tables and

contracts as tables are deleted or features are deactivated.

 pg. 3 Brandon Steinke Python Database App brandon.steinke@yahoo.com

SCREEN SHOT 2 :

Here the top three features are fully expanded. Run Batch Reports, Upload API to Database, Upload

CSV to Database. A lot of effort went into the code for the API request form so the dates would not be

accepted if input incorrectly. The user was given text-based error messages if the form was incorrect.

 pg. 4 Brandon Steinke Python Database App brandon.steinke@yahoo.com

SCREEN SHOT 2 : Remaining features are explained below, Custom Query Input, Time Based Reports,

Management Reports, All Reports. SCREEN SHOT 3 : Bottom of page is an example of a PDF report.

 pg. 5 Brandon Steinke Python Database App brandon.steinke@yahoo.com

SCREEN SHOT 4 :

Below is the workflow concept that included heavy automation. Development never reached the fully

automated state, but all of the blue “Raw Data Sources” and purple “Update Database” workflow

features below were implemented. Please zoom in to read.

Thanks for viewing this project !

